Home > News > Technology Blogs > Fundamentals of Motion Control

Fundamentals of Motion Control

Recently I came across a simple infographic from Power Jack Motion that did a nice job of visualizing the difference between alternating current (ac) and direct current (dc) motors. This article will follow and present the information contained therein.

What is Motion Control, Anyway?

Motion Control is a sub-field of automation encompassing the systems or sub-systems involved in the moving parts of machines in a controlled manner. Using a computer to control an actuator offers benefits, but today getting data and feedback is increasingly important.

Some companies are already seeing the advantage of adding sensors and feedback to a production line. In addition, this extra information can let machines communicate to each and connect to the internet to take advantage of the Industrial Internet of Things (IIoT).

Today motion control often includes a blend of electronics and mechanical components divided into three parts, which have been seen as analagous to how the human body operates.

Motion ControlHumans
Processor or Motion ControllerBrain
ActuatorMuscles and joints
SensorsSenses

To elaborate on this further, the infographic added more detail.

Processor or Motion Controller

There are three types of motion controllers: standalone, PC-based, and individual microcontrollers. This is becoming more and more of an important consideration when setting up production lines. To prevent incumbent inertia and future-proof a production line, the manufacturing brain is evolving.

Previously programmable logic controls (PLCs) were the go-to controller—a robust, centralized control that could be put into a protective enclosure and have everything connect to it. However, as production line advance, the amount of cables, complexity, and cost has increased. Today a PLC that focuses more on software might be better to handle the automation advancements. The programmable automation controller (PAC) does just this. While it expands the capabilities of a PLC, the difference in terms is debatable.


There are individual microcontrollers that allow a production line to add features while not affecting legacy equipment, or letting companies start taking advantage of the IIoT with less commitment. To combat legacy equipment, some older PLCs may continue to run while a new automation process is added.

For example, a new inspection system could accept or reject parts on a line. The legacy equipment might not see this. The legacy equipment only sees a part going in one side and out the other. It can be blind to the new equipment—so long as it knows what to do with the output from the new equipment, it can continue to run as it previously has.

Amplifiers and Drives

There are many types of amplifiers and drives, and there is a lot to dissect here. But when looking at advanced automation, servos look like they are able to add more value and feature to a line when compared to stepper motors. However, this can add more cost and complexity. Servo drives and servo amplifiers transform a low power current/voltage applied to the servo motor windings to produce torque. Different amplifiers include analog servo drives, sinusoidal, trapezoidal, digital servo drives, single phase (brushed) servo drives, three phase (brushless) servo drives, and electric vehicle motor control.

Key features of ac and dc motors
ACDC
Low power demand on startEasy installation
Controlled accelerationSpeed control over a wide range
Adjustable operational speedQuick starting, stopping, reversing, and acceleration
Controlled starting currentHigh starting torque
Adjustable torque limitLinear speed-torque curve

AC synchronous motors

Feedback Sensors and Mechanical Components

Feedback sensors provide motor location. There are several types, including:

  • Quadrature encoder: Gives position relative to the starting point
  • Potentiometers: Gives analog position feedback
  • Tachometers: provides velocity feedback
  • Absolute encoders: for absolute position measurements
  • Resolvers: convert mechanical motion into an electric analog signal to find an absolute position


Overall, motion control is complex, and gaining an understanding of everything is difficult. Simple inforgraphics such as the one described in this article help to simplify things, making it easier to determine which expert or company you should be talking to.

View the original article and related content on Machine Design

Leave a Reply

Your email address will not be published. Required fields are marked *

LMD Linear


Keeping the basics in mind for design, a new infographic lays out the complexity of motion control in a simple visual.
Author: Jeff Kerns | Publication date: March 16, 2018 | Machine Design
© 2018 Informa USA, Inc., All Rights Reserved

Liberty MDrive (LMD) Linear Actuator products integrate a 1.8° 2-phase stepper motor, external shaft linear mechanicals and drive electronics to deliver long life, high accuracy, and repeatability in compact, low cost packages.

Recent Posts

When it comes to your form, fit and function requirements, don’t settle. Get precisely what you need working with us. We know motion.

Contact us with any questions about how we can help you with your motion application or for assistance with your IMS products.

Browse our resource section and find the most useful tools and documents for all our products.